Abstract

This study aims to investigate the tribological behaviour of lamb bone ash (LBA) and boron carbide (B4C) reinforced ZA-27 hybrid metal matrix composites fabricated using a stir casting process. The weight percentage of LBA and B4C particles in the composites were varied from 0–5 wt%. The composites have been evaluated for density, porosity and microhardness before tribological testing. Dry sliding friction and wear behaviour of composites were studied on a pin-on-disc tribometer by varying load from 10–50 N at a fixed sliding speed of 1 m s−1. Also, to investigate the effect of sliding speed on friction and wear behaviour of composites, tests were carried out at 2 m s−1 and 3 m s−1 of sliding speed. A scanning electron microscope (SEM) was used for examining the microstructure and worn surface morphology of composite samples. SEM micrographs revealed the presence and homogeneous distribution of reinforcement particles, and energy-dispersive x-ray spectroscopy (EDS) analysis confirmed the presence of LBA and B4C particles in the composites. Composites density decreased, and porosity increased with the addition of reinforcement particles. The microhardness of the 5 wt% reinforced LBA composite improved by 18.38%, whereas hybrid composite containing (2.5 wt% LBA + 2.5 wt% B4C) showed an improvement of 42% compared to the base alloy. The coefficient of friction (COF) and wear loss increased with the increase in load, whereas COF decreased and wear loss increased with the increase in sliding speed. Composites showed superior wear resistance even at higher loads and sliding speeds. SEM micrographs of worn surface revealed adhesion and abrasion type of wear mechanisms. Therefore, with the improvement in wear resistance this developed composite can be used as a bearing material over monolithic ZA-27 alloy in the automotive sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.