Abstract

In this work, the microstructure and wear characteristics of a surface-reinforced composite based on an aluminium alloy with a mixture of graphene nanoplatelets (GNP) and silicon carbide (SiC), referred to as g-SiC, fabricated by Friction Stir Processing (FSP), are investigated. To further improve the tribological performance, different volume fractions (0 vol%, 5 vol%, 10 vol% and 15 vol%) of g-SiC-reinforced aluminium alloy are prepared by FSP. It is concluded that the Friction Stir Processed (FSPed) AA5083/g-SiC (15 vol%) specimen has optimum reduction in average friction coefficient (61.13%) and optimum reduction in specimen weight (72.97%). In summary, such hybrid reinforcements effectively improve the mechanical and tribological properties of metals with minimal negative impact on the environment and humans, while reducing material loss and overall manufacturing costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call