Abstract

ABSTRACTThe composites of polytetrafluoroethylene (PTFE) filled with expanded graphite (EG), poly(p‐oxybenzoyl) (POB), and basalt fiber (BF) were prepared by heating compression and sintering molding. The tribological behavior of PTFE composites was investigated with a pin‐on‐disk tester under dry conditions and seawater lubrication. The worn surface of PTFE composites and the transfer film on the counterface were observed with a scanning electron microscope. The results indicated that the incorporation of EG and POB improved the hardness of PTFE composites, and addition of BF led to greater load‐carrying capacity. Compared to pure PTFE, the coefficients of friction of PTFE composites slightly increased, but the wear rates were significantly reduced (the wear rate of composite with 3% EG being only 10.38% of pure PTFE). In addition, all the composites exhibited a lower coefficient of friction (decreases of about 0.03–0.07) but more serious wear under seawater lubrication than under dry sliding. The wear mechanism changed from serious abrasive wear of pure PTFE to slight adhesion wear of PTFE composites under both conditions. A transfer film was obviously found on the counterface in seawater, but it was not observed under dry conditions. Among all the materials tested, the PTFE‐based composite containing 20% POB (mass fraction), 2% EG, and 3% BF exhibited the best comprehensive performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2523–2531, 2013

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call