Abstract

Selecting the proper material and surface treatment methods for elements is one of the essential problems when designing water hydraulic components due to the corrosiveness and poor lubricity of water. Experimental investigation was performed to study the tribological properties of ion-nitrided 2Cr13, a kind of martensitic stainless steel, sliding on carbon fiber–reinforced polyetheretherketone (CFRPEEK). The influence of factors such as sliding velocity, load, and lubrication condition were studied through experiments mainly under tap water lubrication. It was found that the friction coefficients are influenced by both the pressure and the sliding velocity. In contrast, the friction coefficients between quenched 2Cr13 and CFRPEEK are much higher. Compared to water lubrication, both the wear rate and friction coefficients increase in the case of dry friction. Wear mainly occurred on the CFRPEEK. By examining the worn surfaces of the specimens, it was found that adhesion was the main form of wear of the PEEK composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call