Abstract
The composite of polytetrafluoroethylene (PTFE) has been generally applied to dynamic seals in Stirling power systems due to its excellent self-lubrication and resilience. In this article, the tribological behavior of polyphenylene sulfide (PPS)-PTFE blends filled with nano-Al2O3 are investigated under different contact loads, sliding speed, and operating temperatures using a block-on-ring friction and wear tester. The results indicate that the addition of nano-Al2O3 could significantly improve the antiwear performance of the PPS-PTFE blend. Nano-Al2O3-filled PPS-PTFE composites have good tribological performance under high-temperature environments. When the content of nano-Al2O3 is 5 wt%, the wear rate of the composite is 276 times better than that of virgin PTFE and more than 150 times better than that of unfilled PPS-PTFE. Dynamic mechanical analysis (DMA) shows that the block of the movement of molecular chains of PTFE with the addition of nano-Al2O3 particles may be responsible for the significant decrease in the wear rate. The greatest impact on the antiwear performance of the composite for Stirling engines is load, followed by temperature, and the minimum effect is due to sliding velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.