Abstract

The tribological behavior of novel, deagglomerated, and active molybdenum disulfide (MoS2) nanoparticles as additives in paraffin oil is presented. In a novel approach, the MoS2 nanoparticles were activated by their intercalation with organic molecules, particularly triglycerides (canola oil) and lecithin (source of phosphorus). A four-ball tribological test setup was used to measure the wear scar diameter, the coefficient of friction, and the extreme pressure properties of such formulated paraffin oils. The results showed significant influence of this uniquely designed MoS2 nanostructured additive on the coefficient of friction (0.07), the wear scar diameter, and the extreme pressure (315 kg) properties of the paraffin oil. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS) were also used for investigating size, the surface morphology, and the elemental composition of the nanoengineered lubricant. The characterization revealed a particle size less than 100 nm and the elemental composition analysis of the wear track showed the presence of Mo, S, and P in the tribofilm, explaining the observed improvements in the tribological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.