Abstract

ABSTRACTThis article analyzes the influence of graphite reinforcement, load, sliding speed, and sliding distance on tribological behavior of A356 aluminum matrix composites reinforced with silicon carbide and graphite using the full-factorial design. The wear rates of A356/10SiC composite material and A356/10SiC/1Gr and A356/10SiC/3Gr hybrid composites have been analyzed. The composites were obtained by a modified compocasting procedure. Tribological tests were performed on a block-on-disc tribometer without lubrication. The testing included sliding speeds of 0.25 and 1.0 m/s, normal loads of 10 and 20 N, and sliding distances of 300 and 900 m. The analysis of the obtained results was performed using the full-factorial method based on the signal-to-noise (S/N) ratio. The effects of load, sliding speed, weight percentage of graphite reinforcement, and sliding distance on the wear rate are 38.99, 17.87, 13.95, and 11.25%, respectively. The best tribological characteristics were exhibited by the A356/10SiC/1Gr hybrid aluminum composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call