Abstract

ABSTRACTThe present study investigates the effect of prior hardening and tempering treatment on the microstructure, mechanical properties, and high-stress abrasive wear response of 0.33% carbon dual-phase (DP) steel. For this purpose, two different DP steels were produced by subjecting the as-received steel to hardening (DP-H) and hardening + tempering (DP-HT) treatments prior to the intercritical (I/C) annealing treatment. These steels along with the as-received steel were subsequently characterized by optical and scanning electron microscopy (SEM) metallography. Furthermore, tensile properties were evaluated along with microhardness measurements. The fracture surfaces of the failed tensile specimens were studied under SEM. Prior hardening and tempering treatment resulted in the formation of a nearly spherical martensite (aspect ratio = 1.2 ± 0.13) phase along with fine iron carbides in DP-HT steel. These fine iron carbides and spherical martensite act as the void nucleation sites in DP-HT steel. Therefore, DP-HT steel exhibits good ductility along with reasonable strength. On contrary, DP-H steel exhibits the presence of a fine elongated martensite (aspect ratio = 6.1 ± 3) phase, which causes poor ductility. Furthermore, abrasion tests were carried out at varying sliding distances at three different applied loads. Dual-phase treatment results in improved overall wear response. Moreover, tempering of prior hardened steel leads to improvement in wear resistance in DP-HT steel under all conditions studied in comparison with DP-H steel. This is attributed to higher strain hardening and greater resistance to particle scooping in DP-HT steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.