Abstract

In this study, the effect of tool asperity and the lubrication condition on tribological behavior, inner surface characteristics and deformation limit of metallic microtube in flaring test were investigated experimentally. The microtube used in this experiment is stainless steel (SUS 316L) and has a 500 μm outer diameter and 50 μm thickness. The flaring tests of the microtube using a conical tool were conducted under dry and two kinds of lubricated-contact conditions as well as different tool surface roughnesses. As a result, it is found that the flaring load and deformation limit of the microtube increase when using a rougher tool. In addition, a spray-type fluorocarbon resin, as a solid lubricant, decreases the above characteristics, but lubrication oil, as a liquid lubricant, exhibits different behavior. Meanwhile, the surface roughnesses of the inner surface of the microtube along axial and circumferential directions reduce when using a rougher tool. From these results, the surface smoothing mechanism of the microtube in the flaring test and the influencing parameters on tribological behavior are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.