Abstract

This study presents the results of testing for the efficiency and effectiveness of filtration using multi-layer filter materials, and briefly presents a new technology for manufacturing filter media using these materials. The first part of the article describes the causes of the formation of impurities in operating fluids and the tribological effects of their impact. The second part is dedicated to testing for filtration efficiency and effectiveness for different filter materials. The third part of the article briefly describes the technology for manufacturing filter media using efficient but difficult-to-form materials. The testing results showed significant differences in filtering efficiency and effectiveness between the cellulose samples and the samples of filter materials based on glass microfibre layers. All of the tested multi-layer materials allow filtration effectiveness of over 90% to be achieved over the entire range of impurity sizes included in the experiment. The results of a comparative test for pressure change during filtration also indicate that glass microfibre materials have a considerably longer operating life than cellulose materials. The time after which a sharp increase in pressure occurs (due to the filter layer being filled with impurities) is nearly four times longer for multi-layer materials than for cellulose materials. The methods for cutting, forming, and joining filter materials have been developed by the author of this article and implemented at the EXMOT company.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.