Abstract

Hydrophobic and self-cleaning photocatalytic ceramics and concrete with potential for the superhydrophobicity are promising novel materials for civil engineering applications including buildings, bridges, road pavements, and airport runways. Due to embedded liquid-repellent properties, such materials have low water and salt absorption and, therefore, enhanced durability. However, in applications requiring high traction (e.g., tire and pavement), there is a concern that reduced adhesion may compromise the friction. This paper reports on wetting, dry friction, and roughness properties of TiO2 coated (hydrophilic) and polymethyl hydrogen siloxane (PMHS) coated (hydrophobic) self-cleaning ceramic tiles. The coefficient of friction values of the tile–rubber interface do not change significantly with the applications of the coatings up to 0.67 for hydrophilic TiO2 based and up to 0.46 for hydrophobic TiO2 + PMHS coatings versus 0.45 for uncoated reference. Friction has adhesion and roughness-related components and this response can be attributed to the roughness component of friction due to TiO2 coating. The challenges related to hydrophobic coatings, including the durability and future research, are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.