Abstract

To cope with the increasing demands of high-performance materials, efforts were made using Laser Powder Bed Fusion technique (L-PBF), taking advantage of its extremely short solidification time to fabricate copper alloy with highly refined microstructure. Copper and Copper alloys are reputed for their high reflectivity resulting in low laser absorption, which makes their 3D fabrication process very challenging. This study aims to provide high density samples in order to obtain high mechanical and tribological properties. This objective is realized through the optimum energy density value which is obtained by monitoring laser power P, scan speed v, hatch space h and layer thickness t. Upon mapping of optimum parameters, the best combination is adopted to manufacture the samples of this study. Mechanical and tribological characterization of nickel aluminium bronze alloy confirmed the efficiency of laser powder-bed fusion (L-PBF) in providing high performance materials, higher properties such as wear resistance, tensile strength and hardness were obtained compared to other manufacturing techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.