Abstract

A touch sensor is essentially a transducer that transforms physical touches into measurable electric signals. Here, we report a fabric-based self-powered triboelectric sensor array. Individual sensing units are constituted by intersections between row electrode lines and column electrode lines that have complementary patterns. When a sensing unit is touched, surface triboelectrification coupled with electrostatic induction generates an output voltage as high as ~25V on both the row and column electrode lines. Through proper shielding design, exceptionally low crosstalk between adjacent electrode lines is achieved, which gives an optimal near end crosstalk (NEXT) value of 0.01. A prototype of a visualized sensing system is demonstrated, which can display the position, the trajectory and the approximate profile of multiple contact objects in real time. The ITESA presented in this work does not rely on power supplies and possesses great flexibility as well as robustness. It can be scaled in area and is expected to be used in fields such as robotics, security monitoring, industrial automation, artificial intelligence, and health monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.