Abstract

Triboelectric nanogenerators and sensors can be applied as human-machine interfaces to the next generation of intelligent and interactive products, where flexible tactile sensors exhibit great advantages for diversified applications such as robotic control. In this paper, we present a self-powered, flexible, triboelectric sensor (SFTS) patch for finger trajectory sensing and further apply the collected information for robotic control. This innovative sensor consists of flexible and environmentally friendly materials, i. e., starch-based hydrogel, polydimethylsiloxane (PDMS), and silicone rubber. The sensor patch can be divided into a two-dimensional (2D) SFTS for in-plane robotic movement control and a one-dimensional (1D) SFTS for out-of-plane robotic movement control. The 2D-SFTS is designed with a grid structure on top of the sensing surface to track the continuous sliding information on the fingertip, e. g., trajectory, velocity, and acceleration, with four circumjacent starch-based hydrogel PDMS elastomer electrodes. Combining the 2D-SFTS with the 1D-SFTS, three-dimensional (3D) spatial information can be generated and applied to control the 3D motion of a robotic manipulator, and the real-time demonstration is successfully realized. With the facile design and very low-cost materials, the proposed SFTS shows great potential for applications in robotics control, touch screens, and electronic skins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call