Abstract

Rapid on-site detection of hazardous chemicals is imperative for remote security and environmental monitoring applications. However, the implementation of current sensing technologies in real environments is limited due to an external high-power requirement, poor selectivity and sensitivity. Recent progress in triboelectric nanosensors and nanogenerators presents tremendous opportunities to address these issues. Here, we report an innovative self-powered triboelectric nanosensor for detection of Hg2+ ions, a harmful chemical pollutant, in a rapid single step on-site detection mechanism. Based on the mechanism of solid-liquid contact electrification, tellurium nanowire (Te NW) arrays serving as a solid triboelectric material as well as the sensing probe underwent periodic contact and separation with the Hg2+ solution, leading to the in situ formation of mercury telluride nanowire (HgTe NWs) owing to the selective binding affinity of Te NWs toward Hg2+ ions. To realize the on-site sensing potential, Te NW arrays were mounted onto the robotic hands equipped with additional wireless transmission functionality for rapid detection of Hg2+ ions in resource-limited settings by employing a simple "touch and sense" mechanism. Such a demonstration of direct integration of self-powered sensors with robotics would lead to the development of low-cost, automated chemical sensing machinery for the on-field detection of harmful analytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.