Abstract

AbstractOcean waves are one of the most promising renewable energy sources for large‐scope applications. Recently, triboelectric nanogenerator (TENG) network has been demonstrated to effectively harvest water wave energy possibly toward large‐scale blue energy. However, the absence of effective power management severely restricts the practicability of TENGs. In this work, a hexagonal TENG network consisting of spherical TENG units based on spring‐assisted multilayered structure, integrated with a power management module (PMM), is constructed for harvesting water wave energy. The output performance of the TENG network is found to be determined by water wave frequencies and amplitudes, as well as the wave type. Moreover, with the implemented PMM, the TENG network could output a steady and continuous direct current (DC) voltage on the load resistance, and the stored energy is dramatically improved by up to 96 times for charging a capacitor. The TENG network integrated with the PMM is also applied to effectively power a digital thermometer and a wireless transmitter. The thermometer can constantly measure the water temperature with the water wave motions, and the transmitter can send signals that enable an alarm to go off once every 10 s. This study extends the application of the power management module in the water wave energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.