Abstract
CoCrMo has been used as an implant material for a long time due to its excellent combination of strength, corrosion resistance and biocompatibility. The formation of a thin passive oxide film on the surface of the material plays a crucial role in its performance. This passive film can be ruptured during contact between two surfaces, but usually reforms in short timescales. However, the reformation of the film depends on the availability of oxygen in the surrounding fluid. The oxygen level in human tissue, cartilage and synovial fluid, around which the implant is situated, is much lower than that in laboratory testing under open-air conditions. Moreover, the local oxygen concentration and pH values in the body vary from patient to patient, depending on the patient's health condition and other factors, which leads to variation in the corrosion resistance of metallic implants. Therefore, an implant that performs well at one time may still experience an undesirable level of corrosion at another. Thus, evaluation of the tribocorrosion of implant materials carried out in open-air conditions does not reflect the actual process the implants undergo once in the body, particularly if there is irritation due to injury or surgery. In this study, we investigate the tribocorrosion behaviour of CoCrMo in bioactive solutions under fully aerobic to anaerobic conditions with varying loads/contact pressures. The anaerobic condition leads to a reduction in wear rate and a reduction in the extent of tribofilm formation but does not have an appreciable effect on friction. The mechanisms are discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.