Abstract

There has been a recent increase in both the production and consumption of ethanol due to the numerous environmental advantages that it offers, such as the fact that it can be produced from a variety of renewable materials, for instance corn and cellulose, or it can be obtained from sugarcane bagasse and biomass (2nd and 3rd generation ethanol). The result of this is that nowadays ethanol is widely seen as the dominant biofuel – or as a blend component in gasoline or pure fuel - in many countries.However, one disadvantage of the use of ethanol is the high corrosive behavior that occurs when its hygroscopic properties are exposed to a large number of materials. Xiaoyuan Lou and Preet Singh showed that the increase of water concentration in ethanol induces pitting and metal loss. Diamond-Like Carbon (DLC) films may be a solution to this problem due to the fact that they can be deposited inside tubes, offer good protection levels against corrosion, and reduce the friction coefficient and wear.This paper shows the tribocorrosion and corrosion studies of DLC films deposited on stainless steel grade 304 (SS304) substrates in order to gauge its appropriateness usage in the construction of pipelines and fuel storage tanks. The surface morphology was analyzed before and after 14 days of immersion. The tribocorrosion, friction coefficient, and wear rate were studied in ethanol to see the effects of water concentration. The films showed good adherence to the substrates. Corrosion and tribocorrosion results showed that for bare Stainless Steel 304 the increase of the water content increases the corrosion and the friction coefficient. DLC coated samples presented few points of delamination, and the friction coefficient and open circuit potentials were very low compared with the bare sample which was water concentration independent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.