Abstract
Diamond-like carbon (DLC) is a promising solid lubricant used as a protective coating to reduce friction against alumina. Friction properties of DLC/alumina are strongly affected by temperature. To improve the friction performance of DLC, we investigate the friction behaviors of DLC/alumina at various temperatures and reveal the mechanisms by using our tight-binding quantum chemical molecular dynamics method. We observe an interesting volcano-type temperature dependence of friction coefficients in our friction simulations. Friction coefficients of DLC/alumina are low and show little change at 300–600 K because no tribochemical reactions occur at the interface. However, as the temperature increases, friction coefficients increase at 600–800 K and subsequently decrease at 800–1000 K. At 600–800 K, interfacial C-O and C-Al bonds between two substrates are formed during friction, leading to a high friction coefficient. Interestingly, further increment of temperature to 800–1000 K induces the graphitization of DLC. The graphite-like surface suppresses the interfacial bond formation, reducing the friction coefficient. We reveal that the volcano-type temperature dependence of friction coefficients is due to the tribochemical reactions generating interfacial bonds at 600–800 K and the graphitization of DLC reducing the number of interfacial bonds at 800–1000 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.