Abstract

Friction and wear behaviors of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) films sliding against Si 3N 4 balls were investigated in different testing environments. The result showed that two films with extreme chemical disparity (one hydrogenated, and the other hydrogen free) showed distinct different friction and wear behaviors, and the friction and wear behaviors of the both films were strongly dependent on the environment. For a-C:H films, much low friction coefficient and wear rate were obtain in dry N 2. In the water and/or oxygen containing environments, the friction coefficient and wear rate of a-C:H films were obviously increased. On the contrary, a-C films only provided low friction coefficient and wear rate in the presence of water and/or oxygen in the test chamber. In dry N 2, the highest friction coefficient and wear rate were observed for a-C films. By investigating the worn surfaces of the films using XPS, it was proposed that the environment dependence of the friction and wear behaviors of the films was closely related with the friction-induced chemical interactions between the films and water and/or oxygen molecules. The specific roles of hydrogen, water and oxygen molecules and their tribochemical effects on the friction and wear mechanism of the films are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call