Abstract
NiO has been found to be highly outstanding in producing H2 and O2 from H2O through magnetic stirring, while its capability for the reduction of CO2 through mechanical stimulation has not been investigated. Presently, NiO particles have been employed to promote the conversion of H2O and CO2 enclosed in reactors into flammable gases through magnetic stirring. For a 150 mL glass reactor filled with 50 mL water, 1.00 g of NiO particles, and 1 atm of CO2, 24 h of magnetic stirring using a home-made Teflon magnetic rotary disk resulted in the formation of 33.80 ppm CO, 10.10 ppm CH4, and 12,868.80 ppm H2. More importantly, the reduction of CO2 was found to be substantially enhanced through coating some polymers and metals on the reactor bottoms, including 25.64 ppm CO and 70.97 ppm CH4 obtained for a PVC-coated reactor and 30.68 ppm CO, 52.78 ppm CH4, 3.82 ppm C2H6, and 2.18 ppm C2H4 obtained for a stainless steel-coated reactor. Hydroxyl radicals were detected using fluorescence spectroscopy for NiO particles under magnetic stirring in water. A tribo-catalytic mechanism has been proposed for the conversion of H2O and CO2 into flammable gases by NiO particles under magnetic stirring that is based on the excitation of electron-hole pairs in NiO by mechanical energy absorbed through friction. These findings not only reveal a great potential for mechanical energy to be utilized for CO2 conversion but are also valuable for fundamental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.