Abstract
AbstractA set of styrene‐ethylene‐butylene‐styrene triblock copolymer (SEBS) membranes with 10 or 25 wt% divinyl‐benzene (DVB) as a crosslinking agent were prepared and validated. Physicochemical characterization revealed suitable hydrolytic and thermal stability of photo‐crosslinked membranes containing 25 wt% DVB and post‐sulfonated. These compositions were evaluated in H2/O2 single cells, and electrical and proton conductivities were furtherly assessed. The membranes with the milder post‐sulfonation showed greater proton conductivity than those with excessive sulfonation. In terms of electrical conductivity, a universal power law was applied, and the values obtained were low enough for being used as polyelectrolytes. At the analyzed temperatures, the charge transport process follows a long‐range pathway or vehicular model. Finally, fuel cell performance revealed the best behavior for the membrane with 25 wt% DVB, photo‐crosslinked during 30 min and mild sulfonated, with a promising power density of 526 mW·cm−2. Overall, the results obtained highlight the promising fuel cell performance of these cost‐effective triblock copolymer‐based membranes and indicate that higher sulfonation does not necessarily imply better power density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.