Abstract

AbstractAnode materials based on IV main group elements like Si, Ge, and Sn show great potential for lithium‐ion batteries (LIBs) due to their high specific capacity and low working potential. However, issues such as volume expansion and lattice pulverization hinder their practical usage. To address these issues for Ge, a novel F127 triblock polymer/acetylene black dual‐assisted strategy is proposed to achieve uniform dispersion of polycrystalline Ge, enabling the preparation of Ge@C nanocomposites via hydrogen reduction. The introduced F127 triblock polymer and acetylene black serves a dual purpose to enhance electrical conductivity and prevent Ge nanoparticles from agglomeration. When tested as anode material for LIBs, the Ge@C nanocomposites exhibit exceptional electrochemical performances, demonstrating a sustained specific discharge capacity of 780 mA h g−1 at 0.2 A g−1 after 100 cycles. Moreover, the capacity remains at 767 mA h g−1 even after 300 cycles at a higher current density of 0.5 A g−1. These enhanced lithium storage performances are attributed to the combined effects of well‐dispersed tiny Ge nanoparticles, uniform carbon coating, and an abundance of defects. These factors effectively mitigate the volume expansion and lattice pulverization of Ge nanoparticles and concurrently enhance their conductivity, leading to improved overall performance in LIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.