Abstract

AbstractSummary: Biodegradable triblock copolymers based on 1,3‐trimethylene carbonate (TMC) and different lactides (i.e. D,L‐lactide(DLLA), L‐lactide (LLA), D‐lactide (DLA)) designated as poly(DLLA‐TMC‐DLLA), poly(LLA‐TMC‐LLA) and poly(DLA‐TMC‐DLA) were prepared and their mechanical and thermal properties were compared with those of high molecular weight poly(TMC) and poly(TMC‐co‐DLLA) statistical copolymers. Triblock copolymers containing crystallizable LLA or DLA segments perform as thermoplastic elastomers (TPEs) when the poly(lactide) blocks are long enough to crystallize. In blends of poly(LLA‐TMC‐LLA) and poly(DLA‐TMC‐DLA) triblock copolymers, stereo‐complex formation between the enantiomeric poly(lactide) segments occurs as demonstrated by differential scanning calorimetry and light microscopy. These blends have good tensile properties and excellent resistance to creep under static and dynamic loading conditions.Permanent deformation (after 2 h recovery) of compression‐molded poly(TMC) and solvent‐cast poly(LLA‐TMC‐LLA) and poly(ST‐TMC‐ST) films.imagePermanent deformation (after 2 h recovery) of compression‐molded poly(TMC) and solvent‐cast poly(LLA‐TMC‐LLA) and poly(ST‐TMC‐ST) films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.