Abstract

Diabetic nephropathy (DN) is a severe complication of prolonged diabetes, impacting millions worldwide with an increasing incidence. This study investigates the role of tribbles pseudokinase 3 (TRIB3), a protein implicated in the progression of DN, focusing on its mechanisms underlying glomerular damage. Through analysis of the Gene Expression Omnibus (GEO) database, we identified TRIB3 among differentially expressed genes in streptozotocin (STZ)-treated C57BL/6J mice. Both in vitro and in vivo experiments were conducted to examine the effects of TRIB3 inhibition on high glucose (HG)-induced damage in podocytes and DN mouse models. The results demonstrated that TRIB3 inhibition reduced inflammatory responses and extracellular matrix (ECM) production in MPC5 cells, mediated by the downregulation of DNA damage-inducible transcript 3 (DDIT3) - a critical regulator of proinflammatory cytokine secretion and ECM synthesis. Inhibiting TRIB3 decreased inflammatory factors and ECM deposition in diabetic mice in vivo, confirming its pivotal role in DN pathogenesis. These findings indicate that TRIB3 and its interaction with DDIT3 contribute significantly to DN by promoting inflammatory cascades and ECM accumulation, presenting potential therapeutic targets for managing the disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.