Abstract

To explore the effect of TRIB3 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs) and reveal the potential role of TRIB3 in bone regeneration. TRIB3-knockdown and TRIB3-overexpression hASCs were used to explore the effect of TRIB3 on osteogenic differentiation by alkaline phosphatase (ALP) staining, alizarin red S (ARS) staining, quantitative real-time polymerase chain reaction (qRT-PCR) and heterotopic bone formation. The regulation of miR-24-3p on TRIB3 was detected by qRT-PCR and western blot. Ribonucleic acid (RNA) sequencing was performed to investigate the downstream regulatory network of TRIB3. TRIB3 promoted the osteogenic differentiation of hASCs both in vitro and in vivo. This process was regulated epigenetically by the post-transcriptional regulation of miR-24-3p, which could bind directly to the three prime untranslated region (3'UTR) of TRIB3 and inhibit TRIB3 expression. The downstream regulatory network of TRIB3-mediated osteogenic differentiation was related to calcium ion binding and cell metabolism, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) signalling pathways. TRIB3 is a promising therapeutic target for hASC-based bone tissue engineering and the epigenetic regulation of TRIB3 through miR-24-3p permits regulatory controllability, thus promoting osteogenesis through an important metabolic target while obtaining a safe and controllable effect via post-transcriptional epigenetic regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.