Abstract

In methods employing molecular probes to explore the targets of bioactive small molecules, long or rigid linker moieties are thought to be critical factors for efficient tagging of target protein. We previously reported the synthesis of a jasmonate glucoside probe with a highly rigid linker consisting of a triazoyl–phenyl (TAzP) moiety, and this probe demonstrated effective target tagging. Here we compare the TAzP probe with other rigid or flexible probes with respect to target tagging efficiency, hydrophobic parameters, aqueous solubility, and dihedral angles around the biaryl linkage by a combination of empirical and calculation methods. The rigid biaryl linkage of the TAzP probe has a skewed conformation that influences its aqueous solubility. Such features that include rigidness and good aqueous solubility resulted in highly efficient target tagging. These findings provide a promising guideline toward designing of better linkers for improving molecular probe performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.