Abstract

The histamine H(3) (H(3)R) and H(4) (H(4)R) receptors attract considerable interest from the medicinal chemistry community. Given their relatively high homology yet widely differing therapeutic promises, ligand selectivity for the two receptors is crucial. We interrogated H(4)R/H(3)R selectivities using ligands with a [1,2,3]triazole core. Cu(I)-assisted "click chemistry" was used to assemble diverse [1,2,3]triazole compounds (6a-w and 7a-f), many containing a peripheral imidazole group. The imidazole ring posed some problems in the click chemistry putatively due to Cu(II) coordination, but Boc protection of the imidazole and removal of oxygen from the reaction mixture provided effective strategies. Pharmacological studies revealed two monosubstituted imidazoles (6h,p) with <10 nM H(4)R affinities and >10-fold H(4)R/H(3)R selectivity. Both compounds possess a cycloalkylmethyl group and appear to target a lipophilic pocket in H(4)R with high steric precision. The use of the [1,2,3]triazole scaffold is further demonstrated by the notion that simple changes in spacer length or peripheral groups can reverse the selectivity toward H(3)R. Computational evidence is provided to account for two key selectivity switches and to pinpoint a lipophilic pocket as an important handle for H(4)R over H(3)R selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.