Abstract

Wheat is one of the global strategic crops and ranks third in terms of cereals production. Wheat crops are exposed to many fungal infections during their cultivation stages, some of which have the ability to secrete a number of toxic secondary metabolites that threaten the quality of the grains, consumer health, producer economics, and global trade exchange. Fifty-four random samples were collected from wheat which originated from different countries. The samples included 14 types of soft wheat to study the extent of their contamination with deoxynivalenol (DON) and T-2 toxin by auto-ELISA technology and r-biopharm microtiter plate. All samples were contaminated with DON toxin except one sample, and the values ranged between 40.7 and 1018.8 µg/kg−1. The highest contamination rates were in Lithuanian wheat and the lowest was in Indian wheat. Meanwhile, the highest average level of T-2 toxin contamination was in Lithuanian wheat grains with 377.4 µg/kg−1, and the lowest average was 115.3 µg/kg−1 in Polish wheat. GC-MS/MS and multiple reaction monitoring mode (MRM) were used to detect 15 triazole derivatives in the collected samples, which may be used to combat fungal diseases on wheat during the growing season. Only 9 derivatives were found: simeconazole, penconazole, hexaconazole, cyproconazole, diniconazole, tebuconazole, metconazole, fenbuconazole, and difenoconazole. These derivatives varied according to the origin of the wheat samples as well as their concentration, whereas another 6 derivatives were not detected in any samples. A direct inverse relationship was found between the DON concentration in the samples and the residues of simeconazole, penconazole, diniconazole, tebuconazole, metconazole, fenbuconazole, and difenoconazole, and the T-2 toxin showed the same relationship except for tebuconazole. The safe and rational use of some triazole derivatives may be a new approach and a promising strategy to not only reduce plant diseases and their problems, but also to get rid of some mycotoxins as grain contaminants.

Highlights

  • Wheat is one of the strategic crops of the world for feeding both humans and animals.Edible wheat is classified as common wheat (Triticum aestivum), club wheat (T. compactum), durum wheat (T. durum), and many other species [1]

  • Fifty-four samples of wheat of different origins were analyzed for triazole residues, which are considered one of the most important groups of fungicides used on wheat to control fungal infection

  • Wheat crops are exposed to attack by several fungal pathogens, especially on the shoots and spikes, causing blight, spots, streaking, rust, and smuts

Read more

Summary

Introduction

Wheat is one of the strategic crops of the world for feeding both humans and animals.Edible wheat is classified as common wheat (Triticum aestivum), club wheat (T. compactum), durum wheat (T. durum), and many other species [1]. Wheat is the third most important cereal crop, after maize and rice, in the food security basket, and the global wheat production reached to 762.2 metric tons in 2019/2020 [2,3]. Fusarium pathogens are the most important seedborne fungi that have been correlated with wheat seedling blight and root rot. Different species of Fusarium were found in both husks and grains at a ratio of 3:1, respectively [6,7]. F. avenaceum, F. culmorum, and F. poae were associated with wheat kernels and other cereal grains, F. cerealis, F. equiseti, F. sporotrichoides, and F. tricinctum were less frequent [8]. Most species of Fusarium fungi have the ability to secret various types of mycotoxins, such as fumonisins, zearalenone, and trichothecenes [9]. Trichothecenes have over 150 toxins produced by various fungi and are considered to incur general cytotoxic effects, having the ability to inhibit protein synthesis in ribosomes during all three stages of protein synthesis [10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call