Abstract

In the pursue of developing anion sensors, an efficient triazole derived azo-azomethine dye chemosensor (S) that differentially senses F‾ and AcO‾ ions has been reported. The ions recognition ability of S was investigated by colorimetric and UV-visible spectroscopic methods. Interestingly, this chemosensor molecule is virtually inactive in presence of other anions such as Cl‾, Br‾ and I‾ and HSO4‾. We have further presented a ratiometric approach to differentiate F‾ and AcO‾ ions. The reversibility of F‾ ion binding with S was established by the addition of Ca(NO3)2 to the fluoride bound S, which led to the regeneration of S. The quantum chemical calculation of energies of unbound and bound S has been employed using Density Functional Theory (DFT) to understand the interaction between chemosensor and anions. Evidence in support of fluoride-induced deprotonation of a O-H bond during the detection of F⁻ ion has been demonstrated by employing 1H NMR titration experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.