Abstract

AbstractThe consistency of three density functional computational implementations (DMol, DGauss, and deMon) are compared with high‐level Hartree–Fock and Møller–Plesset (MP) calculations for triazene (HNNNH2) and formyl triazene (HNNNHCOH). Proton affinities on all electronegative sites are investigated as well as the geometries of the neutral and protonated species. Density functional calculations employing the nonlocal gradient corrections show agreement with MP calculations for both proton affinities and geometries of neutral and protonated triazenes. Local spin density approximation DMol calculations using numerical basis sets must employ an extended basis to agree with other density functional codes using analytic Gaussian basis sets. The lowest energy conformation of triazene was found to be nonplanar; however, the degree of nonplanarity, as well as some bond lengths, is dependent on the basis set, electron correlation treatment, and methods used for the calculation. © 1994 by John Wiley & Sons, Inc.This article is a U.S. Government work and, as such, is in the public domain in the United States of America.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.