Abstract
Triaxial magnetic field compensation is crucial for a zero-field optically pumped magnetometer (OPM) in pursuit of a zero-field environment. In this work, we demonstrate a triaxial magnetic field compensation method for zero-field OPM based on single-beam configuration. It consists of two procedures: (1) pre-compensation to preliminarily cancel out ambient residual magnetic field by low-frequency magnetic field modulation; and (2) precise compensation to further compensate the residual magnetic field by high-frequency magnetic field modulation. This scheme enables rapid and precise compensation of a large-scale magnetic field and supports real null-point acquisition of the triaxial residual magnetic fields with simple processes. The experimental results show that the compensation resolution on the sensitive axis is better than 1 pT and significantly less than the fluctuation of experimental environments. Our work targets on the quick generation of a zero-field environment for high precision OPM, which is especially advantageous for emerging applications including magnetocardiography (MCG) and magnetoencephalography (MEG).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.