Abstract

The recycling and reuse of construction waste have not only effectively protected natural resources but also promoted the sustainable development of the environment. Therefore, in this article, waterborne polyurethane (WPU) as a promising new polymer reinforcement material was proposed to reinforce the road demolition waste (RDW), and the mechanical performance of WPU-reinforced RDW (named PURD) was investigated using triaxial unconsolidated and undrained shear (UU) and Scanning Electron Microscope (SEM) tests. The results showed that under the same curing time and confining pressure, the shear strength of PURD increased with the increase in WPU content. When the WPU content was 6%, the WPU presented the best reinforcement effect on RA. The failure strain of PURD increased with the increase in confining pressure, but increased first and then reduced with the increase in WPU content. The specimens with 5% WPU content showed the best ductility. At the curing time of 7 and 28 days, the internal friction angle and cohesion of PURD increased with the increase in WPU content, and they reached a maximum when the WPU content was 6%. The internal friction angle barely budged, but the cohesion increased obviously. The enhancement effect of WPU was attributed to the spatial reticular membrane structure produced by wrapping and bonding particles with the WPU film. Microscopic analysis showed that with the increase in WPU content, the internal pore and crack size of PURD gradually decreased. As the WPU content increased, the WPU film became increasingly thicker, which increased the adhesion between WPU and RA particles and made the structure of PURD become increasingly denser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call