Abstract

We have developed a finite-difference (FD) method to model the response of a multiple-spacing triaxial array induction tool with a multiple-electrode type sleeve. The FD software was verified versus two other independent modeling methods. The model response was checked for the FD grid refinement, while attempting to minimize run time. Many details of the electrode-sleeve geometry were studied using this method that led to the final electrode-sleeve design. The electrode sleeve reduces the response of the transverse couplings to eccentering in a conductive borehole. Quantitative agreement was found between the measurements and calculations. Using the FD software we study the tool response to various effects of 3D geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call