Abstract

A brazed joint consists of a low-melting point and thin interlayer sandwiched between the high-melting-point base materials, in which the interlayer strength is typically lower than that of the base material. When this butt-joined composite is loaded uniaxially in the direction perpendicular to the plane of the brazing layer, the tensile strength is found to be much higher than that of the braze. This seems to violate the iso-stress condition in such a butt-joint serial configuration. The stress triaxiality has been usually ascribed, but without a quantitative rationalization, as being responsible for this tensile strength enhancement. Here a complete finite element simulation has been conducted to study the dependence of triaxiality and strength enhancement on geometric and material parameters. Two asymptotic limit solutions (based on Bridgman and Xia–Shih solutions, respectively) have been identified to understand the simulation results. The critical role of void evolution has been revealed when making a quantitative comparison to available experiments. In addition, ductility of the brazed joint, which has not been fully addressed in literature, is investigated by the Gurson–Tvergaard–Needleman model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call