Abstract

A series of triaxial compression tests for frozen clay were performed by K0DCGF (freezing with non-uniform temperature under loading after K0 consolidation) method and GFC (freezing with non-uniform temperature without experiencing K0 consolidation) method at various confining pressures and thermal gradients. The experimental results indicate that the triaxial compression strength for frozen clay in K0DCGF test increases with the increase of confining pressure, but it decreases as the confining pressure increases further in GFC test. In other words, the compression strength for frozen clay with identical confining pressure decreases with the increase in thermal gradient both in K0DCGF test and GFC test. The strength of frozen clay in K0DCGF test is dependent of pore ice strength, soil particle strength and interaction between soil skeleton and pore ice. The decrease of water content and distance between soil particles leads to the decrease of pore size and the increase of contact area between particles in K0DCGF test, which further results in a higher compression strength than that in GFC test. The compression strength for frozen clay with thermal gradient can be descried by strength for frozen clay with a uniform temperature identical to the temperature at the height of specimen where the maximum tensile stress appears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.