Abstract

AbstractZircon U–Pb ages, major and trace element geochemistry and Sr, Nd and Pb isotope compositions of diorite and diorite porphyry dykes from the Jinchanggouliang (JCGL) gold ore field on the northern margin of the North China craton (NCC) were studied to investigate their sources, petrogenesis and geodynamic significance. LA-ICP-MS zircon U–Pb dating reveals three major age groups of 2500 Ma (n = 2), 253 ± 7 Ma (n = 5) and 227 ± 1 Ma (n = 9). The inherited ages of 2500 Ma, contemporary with the Archaean NCC continental growth, imply that crustal material was involved in the magma source. The igneous zircons with a concordia age of 227 ± 1 Ma may record the emplacement age of the JCGL dykes. Both diorite and diorite porphyry exhibit a wide range of SiO2 and MgO contents and are characterized by high concentrations of Na2O+K2O and Al2O3, and low abundances of P2O5 and TiO2. They are enriched in large ion lithophile elements and light rare earth elements without significant Eu anomalies, and depleted in high-field-strength elements; all are categorized as shoshonitic rocks. All samples show a narrow range of Sr isotope compositions with initial 87Sr/86Sr ratios from 0.70394 to 0.70592, variable εNd(t) values (1.1 to −12.0) and TDM2 ages of 913–1972 Ma. Their Pb isotope compositions form continuous variation trends and plot in the fields between enriched mantle 1 (EM1) and lower continental crust (LCC). The above results suggest that the JCGL dykes studied could have been derived from mixing of lower crust, lithospheric mantle of the NCC and ascending asthenospheric melt in a post-orogenic extensional geodynamic setting. These shoshonitic dykes, together with the geochronological data of regional ENE-trending retrograded eclogites, ophiolites, continental arc magmatic belt, A-type granite, alkaline intrusions and metamorphic core complex from the northern NCC and Central Asian Orogenic Belt (CAOB) suggest that closure of the Palaeo-Asian Ocean (i.e. stage of pre-collision to collision) had completed during latest Permian to earliest Triassic time, and that the CAOB was subsequently tectonically dominated by post-orogenic extensional regimes. The involvement of asthenospheric melt in the magma source implies that the sub-continental lithospheric mantle (SCLM) of the NCC had been modified, and the onset of lithospheric destruction and thinning beneath the northern NCC may have occurred in Middle–Late Triassic time as a result of post-orogenic subducting slab detachment and lithospheric delamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.