Abstract

Detrital zircon U-Pb dating of the Xingfuzhilu Formation in southern Inner Mongolia yields a maximum depositional age of around 220 Ma. The predominantly Permian and Triassic zircons are characterized by oscillatory zoning and euhedral shapes, with mostly positive zircon eHf(t) values (+2.0 to +16.4), indicating that they were derived from a proximal magmatic source. Early-Middle Paleozoic zircons have variable zircon eHf(t) values from −6.2 to +11.2 and are characterized by weak oscillatory zoning and subhedral-subrounded shapes, suggesting that the sources are a proximal magmatic arc, possibly mixed with components of the Ondor Sum magmatic arc and the magmatic arc at the northern margin of the North China Craton. The remnants of Precambrian blocks in the southeastern Central Asian Orogenic Belt (CAOB), and the North China Craton may also have been a minor source region for the Xingfuzhilu succession. These results, combined with regional data, indicate that a closing remnant ocean basin or narrow seaway possibly existed in the Middle Permian (Guadalupian) immediately prior to final collision of the CAOB and closure of the Paleo-Asian Ocean. Subsequent collision resulted in the crustal uplift and thickening along the Solonker suture zone, accompanied by possible slab break-off and lithospheric delamination during the Latest Permian to Middle Triassic. The resultant orogen in the Late Triassic underwent exhumation and denudation of rocks in response to the postorogenic collapse and regional extension. Vertical crustal growth in the Triassic is documented by detrital zircons from the Xingfuzhilu Formation and appears to have been widespread across entire eastern CAOB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.