Abstract

AbstractThe Middle Unit of the central-northern Argolis Peninsula, in NE Peloponnesus (Greece), is composed of several tectonic slices, locally including intact sequences of mafic volcanic rocks topped by radiolarian cherts. Although some of these sequences are Jurassic in age, many of them display a Triassic age based on biostratigraphical evidence. The petrological studies presented in this paper indicate that the Triassic volcanic rocks were generated in a mid-ocean ridge setting, and that they represent the oldest remnants of the Pindos oceanic crust so far recognized in the Subpelagonian zone. On the basis of immobile trace element analyses, two chemically distinct groups of Triassic lavas can be recognized in the various volcanic sequences. One group is represented by transitional-type mid-ocean ridge basalts (T-MORBs) displaying moderate light rare earth element (LREE) enrichment, and incompatible element abundances very similar to those observed in present-day T-MORBs. The other group exhibits a range of characteristics typical of many normal-type MORBs: that is, variable LREE depletion and flat N-MORB normalized patterns of incompatible element abundance. Moreover, many geochemical characteristics indicate that the various N-MORB type volcanic sequences originated from chemically distinct (heterogeneous) sub-oceanic mantle sources. Analogous to similar basalts from ophiolitic mélanges of the Dinaride-Hellenide belt, the T-MORBs from the Argolis Middle Unit are interpreted as having originated from a primitive mantle source variably enriched by an ocean-island basalt (OIB)-type component. In contrast, the contemporaneous occurrence of N-MORBs implies that, during the Mid-Late Triassic, oceanic spreading of the Pindos basin had already reached, at least in some sectors, a quasi-steady state involving only sub-oceanic mantle sources and their partial melt derivatives. Our model for the Triassic opening of the Pindos oceanic basin and its related tectonomagmatic evolution is largely supported by comparison with the Red Sea embryonic ocean, a modern analogous setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call