Abstract

The combination of acridine/phenoxazine donors and triarylboron acceptor has afforded two thermally activated delayed fluorescence (TADF) emitters with D3-A typed architectures, namely 3DMAC-TB and 3PXZ-TB. Attributing to the highly steric hindrance between D/A groups as well as intense intramolecular charge transfer state, both emitters exhibit well-separated frontier molecular orbitals (FMOs) distributions and distinct TADF characteristics. The high rigidity molecular structures of 3DMAC-TB and 3PXZ-TB contribute to high photoluminescence quantum yields (PLQYs) up to 0.94 and 0.89, respectively. The “star-shaped” configuration endows both emitters with high ratios of horizontal dipole orientation of 86% and 80%, respectively. The organic light emitting diodes (OLEDs) involving 3DMAC-TB and 3PXZ-TB as emitting dopants achieve maximum external quantum efficiencies of 38.8% and 29.4%, respectively. The efficiency of 3DMAC-TB based device is among the state-of-the-art efficiency for green TADF OLEDs. This work unveils great potential with triarylboron-cored multi-donors molecular design strategy in the development of excellent TADF molecules simultaneously possessing high quantum yields and preferentially horizontal emitting dipole orientations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call