Abstract

The innovative design of a triarylborane (TB)-dye with one NMe2-alkylated (propargylated) group and one NMe2 group yielded a system that is both an NMe2 π-donor and an inductive NMe2-alkyl cationic acceptor. Consequently, the new TB-dye was highly sensitive to a "click" reaction with an azide-substituted lysine side chain (yielding TB-lysine), resulting in a bathochromic shift of emission of 100 nm. In addition, fluorene attached to the lysine C-terminus showed FRET with the TB-chromophore, also sensitive to interactions with targets. Both the TB-dye and TB-lysine showed high affinities towards both DNA and proteins, reporting binding by an opposite fluorimetric response for DNA/RNA (quenching) vs. BSA (increase). Thus, the novel TB-dye is an ideal fluorimetric probe for orthogonal incorporation into bio-targets by "click" reactions due to fluorescence reporting of the progress of the "click" reaction and further sensing of the binding site composition. The TB-dye is moderately toxic to human cell lines after 2-3 days of exposure, but efficiently enters cells in 90 min, being non-toxic at short exposure. The most important product of the "click" reaction, TB-lysine, was non-toxic to cells and showed equal distribution between mitochondria and lysosomes. Further studies would focus particularly on the very convenient monitoring of the progress of "click" conjugation of the TB-dye with biorelevant targets inside living cells by confocal microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.