Abstract

Triarylamine (TAA) and related materials have dramatically promoted the development of organic and hybrid photovoltaics during the past decade. The power conversion efficiencies of TAA-based organic solar cells (OSCs), dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs) have exceeded 11%, 14%, and 20%, which are among the best results for these three kinds of devices, respectively. In this review, we summarize the recent advances of the high-performance TAA-based materials in OSCs, DSSCs, and PSCs. We focus our discussion on the structure-property relationship of the TAA-based materials in order to shed light on the solutions to the challenges in the field of organic and hybrid photovoltaics. Some design strategies for improving the materials and device performance and possible research directions in the near future are also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.