Abstract

We have prepared a push-pull porphyrin with an electron-donating triarylamino group at the β,β'-edge through a fused imidazole group and an electron-withdrawing carboxyquinoxalino anchoring group at the opposite β,β'-edge (ZnPQI) and evaluated the effects of the push-pull structure of ZnPQI on optical, electrochemical, and photovoltaic properties. ZnPQI showed red-shifted Soret and Q bands relative to a reference porphyrin with only an electron-withdrawing group (ZnPQ), thus demonstrating the improved light-harvesting property of ZnPQI. The optical HOMO-LUMO gap was consistent with that estimated by DFT calculations. The ZnPQI-sensitized solar cell exhibited a relatively high power conversion efficiency (η) of 6.8 %, which is larger than that of the ZnPQ-sensitized solar cell (η=6.3 %) under optimized conditions. The short-circuit current and fill factor of the ZnPQI-sensitized solar cell are larger than those of the ZnPQ-sensitized solar cell, whereas the open circuit potential of the ZnPQI-sensitized cell is smaller than that of the ZnPQ-sensitized cell, leading to an overall improved cell performance of ZnPQI. Such fundamental information provides a new tool for the rational molecular design of highly efficient dye-sensitized solar cells based on push-pull porphyrins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call