Abstract

The Ptolemy variety for SL(2,C) is an invariant of a topological ideal triangulation of a compact 3-manifold M. It is closely related to Thurston's gluing equation variety. The Ptolemy variety maps naturally to the set of conjugacy classes of boundary-unipotent SL(2,C)-representations, but (like the gluing equation variety) it depends on the triangulation, and may miss several components of representations. In this paper, we define a Ptolemy variety, which is independent of the choice of triangulation, and detects all boundary-unipotent irreducible SL(2,C)-representations. We also define variants of the Ptolemy variety for PSL(2,C)-representations, and representations that are not necessarily boundary-unipotent. In particular, we obtain an algorithm to compute all irreducible SL(2,C)-characters as well as the full A-polynomial. All the varieties are topological invariants of M.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.