Abstract

The paper presents an optimal algorithm for triangulating a region between arbitrary polygons on the plane with time complexity O(N log⁡N ). An efficient algorithm is received by reducing the problem to the triangulation of simple polygons with holes. A simple polygon with holes is triangulated using the method of monotone chains and keeping overall design of the algorithm simple. The problem is solved in two stages. In the first stage a convex hull for m polygons is constructed by Graham’s method. As a result, a simple polygon with holes is received. Thus, the problem of triangulating a region between arbitrary polygons is reduced to the triangulation of a simple polygon with holes. In the next stage the simple polygon with holes is triangulated using an approach based on procedure of splitting polygon onto monotone polygons using the method of chains [15]. An efficient triangulating algorithm is received. The proposed algorithm is characterized by a very simple implementation, and the elements (triangles) of the resulting triangulation can be presented in the form of simple and fast data structure: a tree of triangles [17].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.