Abstract

We report a novel optical functional device, triangular-barrier optoelectronic switch (TOPS), which consists of a triangular-barrier phototransistor (TBP) with avalanche multiplication, grown by gas source molecular beam epitaxy (GSMBE). At first we fabricated and examined the TBP, which was composed of In 0.53Ga 0.47As/In 0.52Al 0.48As layers to confirm its fundamental characteristics such as high sensitivity. On this basis, we optimized the structure, mainly about a δp + gate layer, to introduce avalanche multiplication at low bias voltages into the TBP. We examined the characteristics of the TOPS with an input light of 1.55 μm wavelength. We observed significant S-shaped negative differential resistance (NDR) characteristics. Clear differential gain, bistability and latch characteristics were obtained by only changing the bias voltages, while the input-light power was less than 600 nW and the optical gain was more than 7000. We also found that it is very important to optimize the thickness of the gate layer to fabricate the TOPS. We can apply the TOPS to optical functional devices such as an optical logic device and an optical memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.