Abstract
Most of the reported covalent organic frameworks (COFs) so far are prepared from highly symmetric building blocks, which to some extent limits the expansion of COF diversity and complexity. Low‐symmetric building blocks can be designed through a desymmetrized vertex strategy, which might be used to construct new topological COFs. But reports of COFs constructed by asymmetric building blocks are thus far very rare. Here, a feasible strategy to design asymmetric building blocks for COF synthesis is introduced, by simply varying the positions of functional groups in the monomer. As a proof of concept, two isomeric hexaphenylbenzene‐based “two‐in‐one” type monomers (1,2,4‐HPB‐NH2 and 1,3,5‐HPB‐NH2) are designed and synthesized. To the authors’ surprise, self‐polycondensation of the asymmetric 1,2,4‐HPB‐NH2 (i.e., the isomer of common C3 ‐symmetric 1,3,5‐HPB‐NH2) also affords highly crystalline COF (1,2,4‐HPB‐COF) similar to the symmetric 1,3,5‐HPB‐NH2 counterpart with identical topological structure. The triangular porous structures of both HPB‐based COFs are well resolved by powder X‐ray diffraction (PXRD), theoretical simulations, nitrogen sorption, and morphologies analysis. This work demonstrates the “two‐in‐one” type asymmetric building blocks can also produce highly crystalline frameworks and thus provides a new structural design strategy for reticular chemistry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.