Abstract
In this chapter, generalized triangular matrix representations are discussed by introducing the concept of a set of left triangulating idempotents. A criterion for a ring with a complete set of triangulating idempotents to be quasi-Baer is provided. A structure theorem for a quasi-Baer ring with a complete set of triangulating idempotents is shown using complete triangular matrix representations. A number of well known results follow as consequences of this useful structure theorem. The results which follow as a consequence include Levy’s decomposition theorem of semiprime right Goldie rings, Faith’s characterization of semiprime right FPF rings with no infinite set of central orthogonal idempotents, Gordon and Small’s characterization of piecewise domains, and Chatters’ decomposition theorem of hereditary noetherian rings. A result related to Michler’s splitting theorem for right hereditary right noetherian rings is also obtained as an application. The Baer, the quasi-Baer, the FI-extending, and the strongly FI-extending properties of (generalized) triangular matrix rings are discussed. A sheaf representation of quasi-Baer rings is obtained as an application of the results of this chapter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.