Abstract

Given a polygon \(P\) in the triangular grid, we obtain a permutation \(\pi_P\) via a natural billiards system in which beams of light bounce around inside of \(P\). The different cycles in \(\pi_P\) correspond to the different trajectories of light beams. We prove that \[\operatorname{area}(P)\geq 6\operatorname{cyc}(P)-6\quad\text{and}\quad\operatorname{perim}(P)\geq\frac{7}{2}\operatorname{cyc}(P)-\frac{3}{2},\] where \(\operatorname{area}(P)\) and \(\operatorname{perim}(P)\) are the (appropriately normalized) area and perimeter of \(P\), respectively, and \(\operatorname{cyc}(P)\) is the number of cycles in \(\pi_P\). The inequality concerning \(\operatorname{area}(P)\) is tight, and we characterize the polygons \(P\) satisfying \(\operatorname{area}(P)=6\operatorname{cyc}(P)-6\). These results can be reformulated in the language of Postnikov's plabic graphs as follows. Let \(G\) be a connected reduced plabic graph with essential dimension \(2\). Suppose \(G\) has \(n\) marked boundary points and \(v\) (internal) vertices, and let \(c\) be the number of cycles in the trip permutation of \(G\). Then we have \[v\geq 6c-6\quad\text{and}\quad n\geq\frac{7}{2}c-\frac{3}{2}.\]Mathematics Subject Classifications: 05D99, 51M04Keywords: Triangular grid, billiards, plabic graph, membrane

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.