Abstract

Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to link patterns with a large number of nested arches. To a TFPL is assigned a triple $(u,v;w)$ of $01$-words encoding its boundary conditions. A necessary condition for the boundary $(u,v;w)$ of a TFPL is $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, where $\lambda(u)$ denotes the Young diagram associated with the $01$-word $u$. Wieland gyration, on the other hand, was invented to show the rotational invariance of the numbers $A_\pi$ of FPLs corresponding to a given link pattern $\pi$. Later, Wieland drift was defined as the natural adaption of Wieland gyration to TFPLs. The main contribution of this article is a linear expression for the number of TFPLs with boundary $(u,v;w)$ where $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$ in terms of numbers of stable TFPLs that is TFPLs invariant under Wieland drift. These stable TFPLs have boundary $(u^{+},v^{+};w)$ for words $u^{+}$ and $v^{+}$ such that $\lambda (u) \subseteq \lambda (u^{+})$ and $\lambda (v) \subseteq \lambda (v^{+})$. Les configurations de boucles compactes triangulaires (”triangular fully packed loop configurations”, ou TFPLs) sont apparues dans l’étude des configurations de boucles compactes dans un carré (FPLs) correspondant à des motifs de liaison avec un grand nombre d’arcs imbriqués. À chaque TPFL on associe un triplet $(u,v;w)$ de mots sur {0,1}, qui encode ses conditions aux bords. Une condition nécessaire pour le bord $(u,v;w)$ d’un TFPL est $\lvert \lambda(u) \rvert +\lvert \lambda(v) \rvert \leq \lvert \lambda(w) \rvert$, où $\lambda(u)$ désigne le diagramme de Young associé au mot $u$. D’un autre côté, la giration de Wieland a été inventée pour montrer l’invariance par rotation des nombres $A_\pi$ de FPLs correspondant à un motif de liaison donné $\pi$. Plus tard, la déviation de Wieland a été définie pour adapter de manière naturelle la giration de Wieland aux TFPLs. La contribution principale de cet article est une expression linéaire pour le nombre de TFPLs de bord $(u,v;w)$, où $\lvert \lambda (w) \rvert - \lvert\lambda (u) \rvert - \lvert \lambda (v)\rvert \leq 2$, en fonction des nombres de TFPLs stables, <i>i.e</i>., les TFPLs invariants par déviation de Wieland. Ces TFPLs stables ont pour bord $(u^{+},v^{+};w)$, avec $u^{+}$ et $v^{+}$ des mots tels que $\lambda (u) \subseteq \lambda (u^{+})$ et $\lambda (v) \subseteq \lambda (v^{+})$.

Highlights

  • Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to a link pattern with a large number of nested arches in [2]

  • It soon turned out that TFPLs possess a number of nice properties, which made them worthy objects of study by themselves

  • It is a well known fact that words ω satisfying |ω|1 = N1 and |ω|0 = N0 are in bijection with Young diagrams that fit into a rectangle consisting of N1 columns and N0 rows: given a word ω denote by λ(ω) the corresponding Young diagram

Read more

Summary

Introduction

Triangular fully packed loop configurations (TFPLs) came up in the study of fully packed loop configurations on a square (FPLs) corresponding to a link pattern with a large number of nested arches in [2]. If |λ(w)|−|λ(u)|−|λ(v)| = 1 the linear expression obtained when subtracting swu,v from the right hand side of (1.1) coincides with the linear expression for instable TFPLs with boundary (u, v; w) in terms of Littlewood-Richardson coefficients proved in [3]. These observations encourage a detailed study of the effect of Wieland drift on TFPLs with boundary of excess greater than 2 in order to find linear expressions for their numbers in terms of stable TFPLs

Words and Young diagrams
Triangular fully packed loop configurations
Wieland drift
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call